Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies
نویسندگان
چکیده
Hyperbolic Metamaterials are artificially engineered materials whose optical properties can be specifically tailored to manifest an extremely high level of anisotropy. Due to this remarkable anisotropy they represent a unique opportunity to realize effective bulk meta-structure with extraordinary optical properties in the visible range. A simultaneous dielectric singularity in the in plane permittivity, with respect to the propagation direction, has to lead to a complete sign inversion of the same permittivity for that specific visible frequency. Such a drastic phase change has been theoretically highlighted in the past as the major challenge to be overcome in order to unlock many remarkable optical properties not present artificial optical systems. In this paper we experimentally demonstrate the realization of a metal-dielectric multilayer structure showing an inversion point of coexisting anisotropies at a specified wavelength in the visible range, rising from the particular design and fabrication process. Theoretical models and numerical simulations are in very good agreement with experimental data. Ellipsometrical experiments and optical modeling demonstrate the drastic type I/type II transition. Supercollimation effect has been achieved at the inversion point of the coexisting extreme anisotropies, whereas at the epsilon near zero and pole frequency the perfect lens behavior has been observed.
منابع مشابه
Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials.
Nanoscale slot waveguides of hyperbolic metamaterials are proposed and demonstrated for achieving large optical field enhancement. The dependence of the enhanced electric field within the air slot on waveguide mode coupling and permittivity tensors of hyperbolic metamaterials is analyzed both numerically and analytically. Optical intensity in the metamaterial slot waveguide can be more than 25 ...
متن کاملPhysical nature of volume plasmon polaritons in hyperbolic metamaterials.
We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton excitations in the individual metal layers.
متن کاملON THE SHEARLET TRANSFORM USING HYPERBOLIC FUNCTIONS
In this paper, we focus on the study of shearlet transform which isdened by using the hyperbolic functions. As a result we check an admissibilitycondition such that implies the reconstruction formula. To this end, we will usethe concept of the classical shearlet, which indicates the position and directionof a singularity.
متن کاملConical diffraction and the dispersion surface of hyperbolic metamaterials
Hyperbolic metamaterials are materials in which at least one principal dielectric constant is negative. We describe the refractive index surface, and the resulting refraction effects, for a biaxial hyperbolic metamaterial, with principal dielectric constants 1 < 0, 0 < 2 = 3. In this general case the two sheets of the index surface intersect, forming conical singularities. We derive the ray des...
متن کاملImproving the radiative decay rate for dye molecules with hyperbolic metamaterials.
We directly demonstrate an improvement in the radiative decay rate of dye molecules near multilayer hyperbolic metamaterials (HMMs). Our comprehensive study shows a radiative decay rate for rhodamine 800 (Rh800) that is several times higher due to the use of HMM samples as compared to dielectric substrates. This is also the first experimental demonstration that multilayer hyperbolic metamateria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016